
Parallel Particle Simulations using the POOMA Framework�

Julian C. Cummingsy William F. Humphreyy

Abstract

The POOMA Framework is an object-oriented library and application suite imple-
mented in C++ which enables the parallel simulation of the dynamics of interacting
particles and �elds. Using templates, POOMA provides a exible and intuitive syntax
to express global �eld and particle operations and creates applications with near hand-
coded performance. POOMA is employed at present in multi-material hydrodynamics
calculations, gyrokinetic plasma dynamics, and Monte Carlo neutron transport simu-
lations. Currently under development within the POOMA Framework are interactive
visualization tools for use in all applications developed using POOMA.

1 Introduction

The POOMA (Parallel Object-Oriented Methods and Appliations) Framework is a library
of software components for use in the development of scienti�c computational applications

employing parallel computers. It provides a set of exible software abstractions of physical
quantities such as particles and �elds, and an e�cient, data-parallel syntax for expressing
the numerical solutions to the equations of motion or state governing a physical system

[10, 9].
In many simulations of complex physical problems, a recurring set of methods and

software abstractions for the physical domain and numerical modeling procedures often
arise. These recurring concepts include: data structures representing particles with

associated position, velocity, and other attributes; data structures representing �eld
quantities discretized on a mesh over some spatial domain; and operations involving these
particle and �eld quantities. Many simulations also require large memory and CPU
resources to study phenomena which occur across large domains in time or space. The

purpose of the POOMA Framework is to help decrease the time for both the development
and the execution of scienti�c computional applications by recognizing these two features
of such applications and applying the techniques of parallel computation and object-

oriented design. The POOMA Framework includes objects for commonly occuring physical
quantities such as particles and �elds, and encapsulates the use of parallel algorithms within
the object-oriented structure of the Framework.

A number of packages have been developed to aid in the implementation and execution

of scienti�c computing applications, such as the extensive Parallel ELLPACK package [6].
An important feature of the POOMA Framework is its support for both particle and �eld
quantities in a single integrated, extensible toolkit, which allows POOMA to address a

wider range of problems than systems which focus primarily on, e.g., solution of systems of
partial di�erential equations. In this paper we focus on the particle simulation features of

�This work was funded by the US Department of Energy.
yAdvanced Computing Laboratory, Los Alamos National Laboratory, Los Alamos, NM.

1



2

the POOMA Framework, starting from a discussion of the problem domain addressed by
the design of POOMA, and followed by a description of the object-oriented design of the

POOMA particle components. We conclude with a discussion of a sample application using
the POOMA Framework, a Monte Carlo based neutron transport code which highlights the
use of interacting particle and �eld objects in a single program and demonstrates the use

of POOMA's parallel, object-oriented design to express the solution to a physical problem.

2 Problem Domain

POOMA objects and algorithms are designed for use in solving systems of PDE's and
ODE's, for a wide variety of initial and boundary conditions, in an arbitrary number
of spatial dimensions. For these problems, POOMA provides two basic abstractions of

physical quantities, implemented as C++ objects: Fields and Particles. POOMA provides
both the data structures (objects) to represent these concepts and methods for calculating
the interactions between Particles and Fields. These objects are extensible to new or more

complex data structures and algorithms.

2.1 POOMA Fields

A Field object represents a discretization of a continuous �eld quantity over an underlying

mesh. Using the template mechanism of C++, the type of data stored by a Field object
may be arbitrary, as may be the number of dimensions D for the Field. Internally, Field
data is stored essentially as a D-dimensional array, over an index space selected using

POOMA Index objects. The underlying mesh for a Field object may also be speci�ed
as, e.g., cartesian, cylindrical, or spherical, and the Field may be cell-centered or vertex-
centered. A variety of boundary conditions may be speci�ed for the Field, and separate
boundary conditions may selected for each face of the D-dimensional domain.

When running on a parallel architecture, POOMA will automatically partition the data
in a Field among processor nodes into local Field subdomains, and the user may select which
axes of the Field to parallelize. POOMA also maintains, when running in parallel, guard
or ghost cells along local Field boundaries which store copies of data from the edges of

neighboring local Fields, a common optimization for computation of stencil operations in
PDE solvers.

2.2 POOMA Particles

Particle container objects in the POOMA Framework store a collection of individual particle
elements, where each single particle has some associated number of attributes such as
position, mass, velocity, etc. Typical examples of Particle objects are representations of

atoms in a molecule or crystal, or representations of electrons or ions in a plasma. As for
Fields, the type and dimension of the attribute data for each particle may be selected using
the template feature of C++. Particles may be dynamically created and destroyed during

a simulation.
While Field quantities are used quite frequently (but not exclusively) for the solution of

PDE's, the range of problems for which particles may be required is quite diverse. Particle
simulations employ many di�erent techniques such as molecular dynamic, Monte Carlo,

Langevin dynamic, or particle-in-cell (PIC) algorithms. These algorithms assume quite
di�erent interaction potentials between particles and possibly with external Fields, and have
di�erent requirements for e�cient parallelization. To account for this, POOMA provides
several unique mechanisms for assigning particles to nodes when running in parallel, and



3

the user is free to choose the optimal partitioning strategy based on the particular type
of simulation being performed. The Particle objects in POOMA automatically handle

reassignment of particles to processors when necessary.
A common requirement of particle-based simulations is the ability to compute the

interactions between a particle and its nearest neighbors. Particle container objects in

POOMA will locate those particles within a selected interaction region of a particle, for use
in, e.g., molecular dynamics calculations of the Coulombic interaction potential between
atoms. A constant interaction radius may be used for all the particles, or the interaction
radius may be speci�ed for each particle separately.

2.3 Particle-Field Interactions

POOMA applications may optionally employ just Field objects, just Particle objects, or
both, which is an important feature of the POOMA Framework. POOMA provides the

functionality to compute interactions between Particles and Fields which arise in algorithms
such as, but not limited to:

� the particle-in-cell (PIC) method [4] which solves the Poisson equation r2� = �4��

to �nd the electrostatic potential �eld � due to a charge distribution � resulting from
a charged particle population;

� the particle-particle-particle-mesh (PPPM) method [5], a combination of the molec-
ular dynamics technique for calculating the close-range electrostatic interactions be-
tween charged particles, and the PIC method for computing the long-range electro-

static forces.

POOMA provides methods for scattering particle attributes (such as charge) onto an
underlying Field (such as charge density �), and for gathering a Field quantity such as

the electric �eld E to a particle position r, using one of a number of di�erent interpolation

methods. These abilities require, when working in parallel, the use of a Particle distribution
mechanism which maintains particles local to the processor which owns the associated local
Field subdomain. The object-oriented nature of POOMA simpli�es the task of matching

the Particle layout mechanism and Particle object behavior to the requirements of the
simulation.

3 Object-Oriented Design

The POOMA Framework is implemented as a library of C++ classes, making extensive
use of the template facilities of C++. Templated classes allow one to implement general

objects such as Particle or Field containers for arbitrary data types. The use of templated
classes is one mechanism for software reuse in POOMA, an important bene�t of using an
object-oriented language such as C++ for scienti�c computing.

The design of the POOMA Framework makes use of several features of objected-oriented

design, including:

� Data encapsulation, which associates data structures and the methods which operate
on this data as a single entity, with a common user interface;

� Inheritance, a feature which allows one to derive new objects from existing ones,
adding new functionality without the need to reimplement the previous code;



4

� Polymorphism, the ability to de�ne sets of distinct objects with di�erent functionality
but a common interface, which makes it possible to support wide ranges of behavior

with the same code, contributing to software reuse.

The Particle and Field objects in POOMA use data encapsulation and inheritance;

polymorphism is employed in POOMA to provide an abstraction layer which supports
several di�erent message-passing libraries such as MPI [3] or PVM [2]. POOMA objects
also make signi�cant use of the Standard Template Library (STL) [8], and many of the
idioms from this library such as iterators, containers, and algorithms are employed in the

design of the Framework components.

3.1 Particle Class Design

The Particle objects in the POOMA Framework act as containers which store the
characteristic data for N individual particulate elements. Each individual particle has

several attributes, such as position, mass, velocity, etc. The storage, manipulation, and
parallel distribution of the particles is achieved using three general categories of Particle
objects:

1. Particle attribute objects, which store the values of a single attribute for all the
individual particles. Particle attribute objects are templated on the type of the
attribute data, and act very much like an STL vector container.

2. Particle layout objects, which perform the function of distributing individual particles
from a particle container object among the nodes of a parallel machine. POOMA
provides several di�erent particle layout objects, tailored to the needs of di�erent

particle interaction mechanisms. For example, a particular layout object will
distribute particles based on their position relative to a given Field object, in order
to maintain locality between particles and nearby Field grid points.

3. Particle container objects, which contain a set of particle attribute objects. POOMA
provides a standard base particle container class from which the user can de�ne their
own particle container object, with particle attributes of their choice. This container

object is templated on the type of the desired particle layout mechanism.

The general method for using the POOMA Particle objects is to (1) select a particle
layout object based on the particle interaction mechanism, (2) de�ne a new user-customized
particle container object, derived from a Particle base class provided by POOMA, and (3)

create (instantiate) copies of this new particle container object, specifying the desired layout
mechanism and initializing new individual particles within the container. By separating
the parallel layout functionality from the particle container objects, greater exibility is

available to the user to match parallelization strategies to algorithm requirements without
the need to reimplement the core particle container functionality. This is another example
of software reuse within POOMA.

3.2 Particle Expressions

Using the technique of expression templates [11], particle attribute objects may be combined
in complex expressions, which are then evaluated for all individual particles local to each
parallel node. For example, given a particle container object P with attributes pos and
vel, the following statement would update the value of pos for all the individual particles:



5

P.pos = P.pos + P.vel * dt;

The use of expression templates is a powerful technique which uses the template capability
of C++ to evaluate the structure of an expression at compile-time and generate a single,

inlined loop without the need for temporary results storage. The POOMA Framework
makes extensive use of this technique for Particle and Field objects [9].

3.3 Particle Visualization Capabilities

The ability to interactively visualize the POOMA components in an application is currently
being added to the POOMA Framework. Particle objects, as well as Field objects, are being
enhanced to provide a simple interface to the user to register objects for visualization and

to indicate when data may be safely exported to a visualization component or external
application. This capability is encapsulated in a set of POOMA classes, a design with the
exibility to interface with a number of di�erent visualization clients, or, more generally,

with many di�erent problem-solving environments.

4 Sample Particle Applications

The POOMA Framework is currently being used in the development of several di�erent
scienti�c application codes that rely upon particle-based algorithms to solve speci�c

problems. Along with the creation of codes that can produce useful new scienti�c
results, the intent of these projects is to explore the bene�ts of object-oriented design
in scienti�c application code development and to benchmark the performance of POOMA-
based applications against comparable existing codes.

4.1 A Simple Example

The exibility and utility of the POOMA Particle classes is most easily illustrated with a

simple example application code. The following short program performs a simulation of
charged particles moving in a static electric �eld using the particle-in-cell method. The
code de�nes a customized Particle class to describe the charged particles, initializes an
electric �eld and a population of these particles, and employs a simple leapfrog scheme to

integrate the particles' equation of motion.

1 #include "Pooma.h" // include Pooma header files

2 template <class PL> class ChargedParticles : public ParticleBase<PL> {

3 public:

4 ParticleAttrib<double> qm; // charge-to-mass ratio

5 PL::ParticlePos_t V, E; // velocity and local E field value

6 ChargedParticles(PL& pl) : ParticleBase<PL>(&pl) { // constructor

7 addAttribute(qm); addAttribute(V); addAttribute(E);

8 }

9 };

10 const unsigned int Dim = 2; // dimensionality of simulation domain

11 const double pi=acos(-1.0), qmmax=1.0, dt=1.0, E0=0.01;

12 const int nx=200, ny=200, totalP=4000, nt=50;

13 typedef ParticleSpatialLayout<double,Dim> playout_t;

14

15 int main(int argc, char *argv[]) {

16 Pooma pooma(argc, argv);



6

17 int numnodes=Pooma::getNodes(), mynode=Pooma::myNode();

18 Index I(nx), J(ny); // Indexes for domain

19 FieldLayout<Dim> FL(I,J); // FieldLayout

20 playout_t PSL(&FL); // ParticleLayout

21 Field<Vektor<double,Dim>,Dim> EFD(FL); // create static E field

22 EFD[I][J](0) = -2.0*pi*E0*cos(2.0*pi*(I+0.5)/nx)*cos(4.0*pi*(J+0.5)/ny);

23 EFD[I][J](1) = 4.0*pi*E0*sin(2.0*pi*(I+0.5)/nx)*sin(4.0*pi*(J+0.5)/ny);

24 ChargedParticles<playout_t> P(PSL); // Particles object

25 int len = totalP / numnodes;

26 if ((totalP-len*numnodes)>0 && mynode==0) len += totalP-len*numnodes;

27 P.create(len); // add particles

28 Vektor<unsigned,Dim> base(2,3);

29 Vektor<double,Dim> upper(nx,ny);

30 assign_bit_reverse(P.R, P.ID, base, upper); // initial positions

31 assign_random(P.qm, qmmax, -qmmax); // set q/m values

32 P.update(); // update particles

33 IntNGP<double,Vektor<double,Dim>,Dim> myinterp; // interpolater

34 for (int it=0; it<nt; it++) { // main timestep loop

35 P.R = P.R + dt * P.V; // advance particle positions

36 P.R(0) = fmod(P.R(0)+nx,nx); // periodic boundary conditions

37 P.R(1) = fmod(P.R(1)+ny,ny);

38 P.update(); // redistribute particles

39 gather(P.E, EFD, P.R, myinterp); // get E field values

40 P.V = P.V + dt * P.qm * P.E; // advance particle velocities

41 }

42 return 0;

43 }

The ParticleBase class provides a standard description of a particle population in which

each particle has a position R (represented as a POOMA Vektor object, a data vector of
arbitrary length and element type) and a unique global identi�cation number ID. Lines
2{9 de�ne a customized class derived from ParticleBase for this application. After creating
some constants in lines 10{12, we begin the main program by creating a Pooma object on

line 16, which will manage several run-time tasks and provide useful system information.
Next, we must give domain and layout information for the Particle and Field objects we will
be using. Line 18 creates Index objects that describe our simulation domain. From these,
we can create a FieldLayout object that will manage the decomposition of Fields across

processors. In turn, we then generate a ParticleSpatialLayout object that will distribute
particles so that their data is on the same processor as Field data near their position, since
this is most optimal for performing particle-�eld interpolation.

With this setup complete, we create and initialize a Field of Vektors to represent the
static electric �eld in lines 21{23. We then instantiate our ChargedParticles class on line
24, and �ll it with new particles on line 27 using the create member function. Particle
attributes can be initialized in various ways, including the use of standard methods such

as bit-reversal (as shown in lines 28{30 to set particle positions) and random number
generation (as on line 31). The call of update on line 32 tells the Particle object to update
the parallel distribution of particle data based on the layout and to account for any newly
created or destroyed particles. Finally, on line 33, we instantiate an interpolater object,



7

which performs nearest-grid-point interpolation. The Framework provides a standard set
of classes that perform well-known interpolation methods, and allows users to add their

own interpolation classes. With the Field, Particle and interpolate objects ready, we now
perform the main loop to integrate the particle motions in time, as shown in lines 34{
41. Note the simple data-parallel syntax used in writing the equations of motion and

the straightforward interface for requesting particle-�eld interpolations. In addition to
providing a very exible description for a particle population, POOMA allows the use of
clear, high-level syntax for specifying the scienti�c phenomena being modeled and manages
the issues of on-node performance and parallel computing transparently.

4.2 MC++: Monte Carlo Neutron Transport Simulation

MC++ is an implicit multi-group Monte Carlo neutron transport code written in C++

and based upon an \alpha" version of the POOMA Framework that does not employ
advanced C++ template features. It determines the criticality of a system containing

�ssionable material by �nding an asymptotic solution to the transport equations [7]. MC++

was developed within a period of �ve months using the Particle and Field classes and
the POOMA parallel abstractions, and it has been run on a variety of MPP, SMP, and
workstation platforms. This simple portability has allowed MC++ to be developed in the
relatively robust computing environment of desktop workstations and then easily ported to

leading-edge machines such as the Intel Teraop at Sandia National Laboratory.
As a check of code performance, MC++ has been benchmarked against MCNP [1], a

powerful, well-known Monte Carlo transport code written in Fortran 77 and using the PVM
library [2] for message passing, on a variety of platforms. Since MC++ calculates on a 3D

Eulerian mesh, while MCNP does not employ a mesh at all, a simple test problem was
devised in which the system contained a single medium with no boundaries engineered to

give a known physics result. Selected timing results of this comparison study are shown in

Table 1 for runs of 10 cycles using 40,000 particles.

Platform Nodes MCNP (sec.) MC++ (sec.)

SGI R4k 1 293.9 207.3

SGI R8k 1 115.5 100.9

SGI R10k 1 34.6 50.9

IBM RS6k 1 53.3 119.6

Sun Sparc10 1 105.0 193.1

Cray T3D 1 157.8 225.0

Cray T3D 2 154.8 106.8

Cray T3D 4 219.0 82.2

Cray T3D 8 82.2 46.0
Table 1

Timing comparison of MCNP and MC++ on various platforms.

The single-node runs indicate roughly comparable performance for the two codes,
depending upon the architecture used. Parallel runs on the Cray T3D highlight how the

design of MC++ around POOMA parallel abstractions allows the code to make better use
of massively parallel platforms. It is worth noting that this data was produced with a
preliminary version of MC++ that was not tuned in any way for performance. Signi�cant
performance gains are expected as the code is re�ned and migrated to the enhanced version



8

of the Framework described here. Nonetheless, we see that with minimal or no sacri�ce in
on-node performance, we can produce codes that employ an easily understood, high-level

syntax, are straightforward to extend with new modeling capabilities, are quickly ported
to new computing platforms, and make e�cient use of parallel processing capability.

5 Current Usage

The POOMA Framework is currently employed in a number of applications in collaboration
with several research groups at Los Alamos National Laboratory. The Field abstractions of

POOMA are used in development of codes which model multi-material hydrodynamics and
ocean dynamics. The Particle objects in POOMA are currently in use in a smooth-particle
hydrodynamics application, while both the MC++ neutron transport code described in
Section 4.2 and a PIC gyrokinetic plasma application employ both Particles and Fields.

POOMA Framework applications have been successfully compiled on a number of work-
station and supercomputer architectures, including SGI, DEC, IBM, and Sun workstations
as well as the Cray T3D and the Intel Teraop. Further information about the POOMA
Framework may be found on the POOMA web page, http://www.acl.lanl.gov/Pooma/,

including sample programs and documentation.

6 Acknowledgements

POOMA is developed in the Advanced Computing Laboratory at Los Alamos National
Laboratory. The POOMA development team includes Pete Beckman, Paul Hinker, Steve
Karmesin, MaryDell Tholburn, and Timothy Williams, and is led by John Reynders.

References

[1] J. F. Briesmeister, ed., MCNP { A general Monte Carlo N-particle transport code, version 4A,
Publication LA-12625-M, Los Alamos National Laboratory, 1993.

[2] A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Manchek, and V. Sunderam, PVM: Parallel
Virtual Machine, The MIT Press, 1994.

[3] W. Gropp, E. Lusk, and A. Skjellum, Using MPI, The MIT Press, 1996.
[4] F. H. Harlow, The particle-in-cell computing method in uid dynamics, Methods Comput.

Phys., 3 (1964), pp. 319{343.
[5] R. W. Hockney, S. P. Goel, and J. W. Eastwood, A 10000 particle molecular dynamics model

with long-range forces, Chem. Phys. Lett., 21 (1973), pp. 589{591.
[6] E. N. Houstis, J. R. Rice, and T. S. Papatheodorou,Parallel (parallel-to) ELLPACK : An expert

system for parallel processing of partial-di�erential equations, Math. Comput. Simulation, 31
(1989), pp. 497{507.

[7] S. R. Lee, J. C. Cummings, and S. D. Nolen, MC++: Parallel, portable, Monte Carlo neutron
transport in C++, in Proceedings of the Eighth SIAM Conference on Parallel Processing for
Scienti�c Computing, Minneapolis, MN, March 14-17, 1997.

[8] D. R. Musser and A. Saini, STL Tutorial and Reference Guide: C++ Programming with the
Standard Template Library, Addison-Wesley, 1996.

[9] J. V. W. Reynders, The pooma framework: A templated class library for parallel scienti�c
computing, in Proceedings of the Eighth SIAM Conference on Parallel Processing for Scienti�c
Computing, Minneapolis, MN, March 14-17, 1997.

[10] J. V. W. Reynders, P. J. Hinker, J. C. Cummings, S. R. Atlas, S. Banerjee, W. F. Humphrey,
S. R. Karmesin, K. Keahey, M. Srikant, and M. Tholburn, Pooma, in Parallel Programming
Using C++, G. V. Wilson and P. Lu, eds., The MIT Press, 1996, ch. 14, pp. 547{587.

[11] T. Veldhuizen, Expression templates, C++ Report, 7 (1995), pp. 26{31.


